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Abstract
The physical interaction of proteins plays a key functional
role in many important cellular processes. To understand the
molecular mechanisms underlying these functions, is cru-
cialit to determine the structure of protein complexes. How-
ever, using experimental methods to obtain the structure of
protein complexes is very expensive in time and resources.
In order to assist the experiment, a computational model-
ing method for protein structure has been proposed, which
is called protein docking. One of the challenges in com-
putational modeling is how to select the right protein from
the large number of protein complexes generated.Here, we
develop a deep learning-based approach to evaluate protein
docking models, utilizing graph neural networks that extract
interface regions and represent them as graphs, with chemical
and physical characteristics of atoms calculated by the latest
protein representation work named as dmasif as features of
nodes and edges in the graph, respectively, trained, validated
and tested on benchmark datasets. The results show that we
only trained with part of the training set of the previous work,
achieve the performance of the previous work, and perform
better on some metrics.

Introduction
Proteins, variable-length chains of amino acid residues as-
sembled from 20 typical amino acids, mediate the funda-
mental processes of life. Amino acids assemble to form
polymer chains, which can fold into 3D structures whose
shape largely determines the function of proteins. These
folded structures can be described at four levels: primary
structure, which simply captures the linear sequence of
amino acids; secondary structure, which describes the lo-
cal arrangement of amino acids, including structural motifs
such as α-helices and β-sheets; tertiary structure, Describes
the complete spatial arrangement of all residues; Quater-
nary structure, describing how multiple distinct amino acid
chains can aggregate to form larger complexes(Sun, Foster,
and Boyington 2004). The quaternary structure of proteins
also be referred to as protein-protein interactions (PPIs).
PPIs play a crucial role in cellular activities and are involved
in many essential biological processes in cells(Berggård,
Linse, and James 2007; Scott et al. 2016; Typas and Sour-
jik 2015). In order to understand the functional mechanism
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of PPIs and the basic physicochemical information of pro-
tein complexes, the 3D structures of protein complexes have
been determined experimentall. And with the development
of cryo-electron microscopy (cryo-EM), the experimental
structural biology community is determining the structures
of protein complexes at a steady rate, but the structures of
many important protein interactions remain undetermined.
However, experimental methods are usually technically dif-
ficult and require a lot of time and resources. To complement
the experimental approach, computational modeling meth-
ods for the complex structure of proteins, often referred to
as protein docking(Aderinwale et al. 2020), have been ex-
tensively studied over the past 20 years.

Protein-protein docking aims to assemble protein com-
plexes through two individual protein structures(Porter et al.
2019), which can be divided into two main categories:
template-based methods and ab initio methods. Template-
based methods use a known structure as a scaffold of mod-
eling(Anishchenko et al. 2015), and ab initio docking assem-
bles individual structures and scores the resulting models to
select the most plausible model, which includes two basic
processes: sampling and scoring(Huang 2014). Given two
separate protein structures, protein docking attempts to sam-
ple the putative binding mode of one protein relative to the
other. These sampled protein complexes are often referred
to as decoys. Then, the sampled decoys are evaluated using
a scoring function, which is expected to correctly identify
the protein-protein complex conformation close to the na-
tive, giving the native decoy a better score to correctly pre-
dict complex conformations similar to the native.

As more and more PPIs are discovered in biological
functions, protein-protein docking has made considerable
progress in all aspects. However, how to distinguish near-
native conformations from a large number of sampled de-
coys with an appropriate scoring function remains a long-
standing challenge. Previous work has divided protein dock-
ing scoring methods into three categories: force-field-based,
knowledge-based, and machine-learning based. Machine
learning-based scoring functions can discover complex non-
linear combinations of protein-protein interface features,
so machine learning-based scoring functions may outper-
form traditional scoring functions. However, many machine
learning-based scoring functions still fail to exploit spatially
arranged details or higher-order interaction patterns on the



interface. GNN has the powerful function of modeling the
dependencies between nodes in the graph, which has made a
breakthrough in the field of graph analysis related research.
Using GNN can capture all atoms on an interface of any
size in a more flexible way, and we are trying to develop
a graph neural network-based scoring method for protein-
protein docking between proteins.

Related work
Protein docking methods are roughly classified into two
categories, template-based modeling methods and ab ini-
tio methods. Template-based modeling methods can use
local complex(Tuncbag et al. 2011) or global com-
plex(Anishchenko et al. 2015) information. In reality, ab ini-
tio methods do not rely on prior information and therefore to
be used more. In general, the task of protein-protein docking
involves two steps: sample and scoring(Sunny and Jayaraj
2022). Among the sampling steps, the fast Fourier transform
proposed in 1992(Katchalski-Katzir et al. 1992; Padhorny
et al. 2016) has achieved great success; and other methods
like particle swarm optimization(Moal and Bates 2010) and
geometric hashing(Fischer et al. 1995; Venkatraman et al.
2009) also perform well. In the more recent progress, nor-
mal mode analysis(Oliwa and Shen 2015) and protein dy-
namics simulation(Gray et al. 2003) take protein flexibility
into consideration.

Nevertheless, the more challenging step is the scoring of
docking decoys(Moal et al. 2013). In the step of ab initio
methods, a large number of decoys can often be generated,
but only a few of them are near-native. And due to the large
number of decoys, high-speed and high-precision scoring
methods have an important impact on the performance of
protein docking. The scoring methods that have been applied
can be roughly divided into three categories: Force field-
based(Akbal-Delibas et al. 2016; Degiacomi 2019; Gainza
et al. 2020), knowledge-based(Lu, Lu, and Skolnick 2003;
Huang and Zou 2008), and machine learning-based(Basu
and Wallner 2016; Geng et al. 2020; Wang et al. 2020).
Force field-based methods usually consider the different
physics-related energy terms, such as van der Waals poten-
tial and electrostatic potential and always minimize them
to reach the most stable state. Knowledge-based scoring
methods generally convert existing knowledge on protein
interactions into statistical potentials. There are also some
scoring methods combined the Force field-based methods
and knowledge-based methods(Vreven, Hwang, and Weng
2011; Zimmermann et al. 2012). At the same time, with
the development of bioinformatics, machine learning-based
methods are gradually emerging and have achieved impres-
sive performance. By applying complex nonlinear models,
machine learning methods can discover complex patterns
in protein-protein interaction. Therefore, machine learning-
based scoring methods may perform better than traditional
scoring methods. Among the machine learning approach, the
recent rise of deep learning methods can extract more com-
plex features to make better classification results.

In this work, we apply a graph neural network (GNN) to
capture all atoms at an interface of any size in a flexible
manner. At the same time, GNN represent the interface is

rotationally invariant, meaning arbitrary rotations of a com-
plex are accounted for. We also try to apply geometric vector
perceptrons (GVPs)(Jing et al. 2020) to make it easier for a
GNN to learn functions whose significant features are both
geometric and relational.

Table 1: Dockground dataset splits for training and testing
our model

Fold PDB ID

1 1A2K,1E96,1HE1,1HE8,1WQ1,1F6M,1MA9,2BTF
1G20,1KU6,1T6G,1UGH,1YVB,2CKH,3PRO

2 1AKJ,1P7Q,2BNQ,1DFJ,1NBF,1R4M,1XD3
2BKR,1GPW,1HXY,1U7F,1UEX,1ZY8,2GOO,1EWY

3 1AVW,1BTH,1BUI,1CHO,1EZU,1OOK,1OPH,1PPF
1TX6,1XX9,2FI4,2KAI,1R0R,2SNI,3SIC

4 1BVN,1TMQ,1F51,1FM9,1A2Y,1G6V,1GPQ
1JPS,1WEJ,1L9B,1S6V,1W1I,2A5T,3FAP

Materials and Methodology
Dockground Benchmark
To train and test our model, we first used the Dockground
dataset 1.0(Liu, Gao, and Vakser 2008). Docking decoys
in this dataset were built by Gramm-X(Tovchigrechko and
Vakser 2005). The dataset includes 58 target complexes,
each with averages of 9.83 correct and 98.5 incorrect decoys.
A decoy was considered as correct following the CAPRI
criteria(Lensink et al. 2018), which consider interface root
mean square deviation (iRMSD), ligand RMSD (lRMSD),
and the fraction of native contacts (fnat). The iRMSD is the
Cα RMSD of interface residues with respect to the native
structure. Interface residues in a complex are defined as all
the residues within 10.0 Å from any residues of the other
subunit. lRMSD is the Cα RMSD of ligands when recep-
tors are superimposed, and fnat is the fraction of contact-
ing residue pairs, that is, residue pairs with any heavy atom
pairs within 5.0 Å, that exist in the native structure. To re-
move redundancy, we grouped the 58 complexes using se-
quence alignment and TM-align (Zhang and Skolnick 2004).
Two complexes were assigned to the same group ifat least
one pair ofproteins from the two complexes had a TM-score
ofover 0.5 and sequence identity of 30% or higher. This re-
sulted in 29 groups (Table 1). In Table 1, complexes (PDB
IDs) ofthe same group are shown in lower case in a paren-
thesis followed by the PDB ID ofthe representative. These
groups were split into four subgroups to perform four-fold
cross-validation, where three subsets were used for training,
while one testing subset was used for testing the accuracy of
the model. Thus, by cross-validation, we have four models
tested on four independent testing sets. Among the training
set, we used 80% ofthe complexes (i.e., unique dimers) for
training a model and the remaining 20% of the complexes
as a validation set, which was used to determine the best
hyper-parameter set for training. In the results, the accuracy
of targets when treated in the testing set was reported.



Table 2: Atom features

Features Representation

Atom type C,N,O,S,F,P,Cl,Br,B,H(one hot)
The degress(connections) of atom 0,1,2,3,4,5(one hot)

The number of connected hydrogen atoms 10,1,2,3,4(one hot)
The number of implicit valence electrons 0,1,2,3,4,5(one hot)

The chemical features Six values from 0 to 1
Aromatic 0 or 1

CAPRI Benchmark
The CAPRI score set(Lensink and Wodak 2014) was used as
an external test set. It consists of 13 protein dimers for a total
of 16 666 models generated by over 40 different research
teams using a variety of software.Each decoy set included
500 to 2,000 models generated using different methods by
CAPRI participants.It is acknowledged as the most diverse
set of docking models with targets of different complexity.

Our Model
In this section, we describe our model, which uses the
graph neural network.This algorithm is inspired by a recent
work in drug–target interactions(Lim et al. 2019), which de-
signed a two-graph representation for capturing intermolec-
ular interactions for protein–ligand interactions. We will
first explain how the 3D structural information of a pro-
tein–complex interface is embedded as a graph. Then, we
describe how we used a graph attention mechanism to fo-
cus on the intermolecular interaction between a receptor and
a ligand protein. The overall protocol is illustrated in Fig-
ure 1.For an input protein docking decoy, the interface re-
gion is identified as a set of residues located within 10.0 Å
of any residues of the other protein. A residue–residue dis-
tance is defined as the shortest distance among any heavy

atom pairs across the two residues. Using the extracted in-
terface region, two graphs are built representing two types
of interactions: the graph G1 describes heavy atoms at the
interface region, which only considers the covalent bonds
between atoms of interface residues within each subunit as
edges. Another graph G2 connects both covalent (thus in-
cludes G1 ) and non-covalent residue interaction as edges,
where a non-covalent atom pair is defined as those which
are closer than 10.0 Å of each other. Both graphs will be pro-
cessed by a graph neural network (GNN) to output a score,
which is a probability that the docking decoy has a CAPRI
acceptable quality (thus making higher scores better).

Building Graphs
A key feature of this work is the graph representation of an
interface region of a complex model. Graph G is defined by
G (V, E, and A), where V denotes the node set, E is a set
of edges, and A is the adjacency matrix, which numerically
represents the connectivity of the graph. For a graph G with
N nodes, the adjacency matrix A has a dimension of N ×
N , where Aij > 0 if the i-th node and the j-th node are
connected, and Aij 0 otherwise. The adjacency matrix A1
for graph G1 describes covalent bonds at the interface and
thus defined as follows:

A1
ij =

{
1 if atom i and atomjare connected by a covalent bond or if i = j

0 otherwise
(1)

A2
ij =


A1

ij , if i, j ∈ receptor or i, j ∈ ligand

e
−(dij−µ)

2

σ ,, if dij ≤ 10Å and i ∈ recept or and j ∈ ligand
or if dij ≤ 10Å and j ∈ receptor and i ∈ ligand

0, otherwise

(2)

The matrix A2 for G2 describes both covalent bonds and
noncovalent interactions between atoms within 10.0 Å to
each other. It is defined as follows:

where dij denotes the distance between the i-th and the j-
th atoms. µ and σ are learnable parameters, whose initial val-
ues are 0.0 and 1.0, respectively. The formula e−(dij−µ)2/σ

decays as the distance increases between atoms.
As for the node features in the graph, we considered the

physicochemical properties of atoms. We used the same fea-
tures as used in previous works(Lim et al. 2019; Torng and

Altman 2019) as shown in Table 2. Thus, the length of a fea-
ture vector of a node from Table 2 was 34 (10 + 6+5 + 6 +
6 + 1), which was embedded by a one-layer fully connected
(FC) network into 140 features.

Generate the chemical features
For the chemical features of atoms, we calculated using
dmasif, the state of the art protein characterization work.
This work present a new framework for deep learning on
protein structures that addresses these limitations. Among



Figure 1: Framework of GNN-DOVE. GNN-DOVE extracts the interface region of protein complex and further reconstructs
graph with/without intermolecular interactions as input, then outputs the probability that indicates if the input structure is
acceptable or not. (A) Overall logical steps of the pipeline. (B) Architecture of the GNN network with the gated graph attention
mechanism.

the key advantages ofour method are the computation and
sampling of the molecular surface on-the-fly from the un-
derlying atomic point cloud and a novel efficient geometric
convolutional layer. As a result, Dmasif is able to process
large collections ofproteins in an end-to-end fashion, taking
as the sole input the raw 3D coordinates and chemical types
of their atoms, eliminating the need for any hand-crafted pre-
computed features.

Attention and Gate-Augmented Mechanism
The constructed graphs are used as the input to the GNN.
More formally, graphs are the adjacency matrix A1 and A2,
and the xin =

{
xin
1 , xin

2 , · · · , xin
N

}
with x ∈ RF , where F is

the dimension of the node feature.
We first explain the attention mechanism of our GNN.

With the input graph of xin, the pure graph attention co-
efficient is defined in Eq.3, which denotes the relative im-
portance between the i-th and the j-th node:

eij = x′T
i Ex′

j + x′T
j Ex′

i3 (3)

where x′
i and x′

j are the transformed feature representa-
tions defined by x′

i = Wxin
i and x′

j = Wxin
j . W,E ∈

RF×F are learnable matrices in the GNN. eij and eji be-
come identical to satisfy the symmetrical property of the
graph by adding x′T

i Ex′T
j and x′T

i Ex′T
i The coefficient will

only be computed for i and j where Aij > 0.
Attention coefficients will also be computed for elements

in the adjacency matrices. They are formulated in the fol-
lowing form for the element (i, j):

aij =
exp (eij)∑

j∈Ni
exp (eij)

Aij (4)

where aij is the normalized attention coefficient for the
i-th and the j-th node pair, eij is the symmetrical graph at-
tention coefficient computed in Eq.3, and Ni is the set of
neighbors of the i-th node that includes interacting nodes j
where Aij > 0.The purpose of Eq.4 is to consider both the
physical structure of the interaction,Aij ,and the normalized
attention coefficient,eij , to define the attention.

Based on the attention mechanism, the new node fea-
ture of each node is updated by considering its neighbor-
ing nodes, which is a linear combination of the neighboring
node features with the final attention coefficient aij :

x′′
i =

∑
j∈Ni

aijx
′
j (5)

Furthermore, the gate mechanism is further applied to
update the node feature since it is known to significantly
boost the performance of GNN. The basic idea is similar to
that of ResNet, where the residual connection from the in-
put helps to avoid information loss, alleviating the gradient
collapse problem of the conventional backpropagation. The
gated graph attention can be viewed as a linear combination
of xi and x′′

i , as defined in Eq.6:

xout
i = cixi + (1− ci)x

′′
i (6)



where ci = [D(xi||x′′
i ) + b], D ∈ R2F is a weight vector

that is multiplied (dot product) with the vector xi||x′′
i , and b

is a constant value. Both D and b are learnable parameters
and are shared among different nodes. xi||x′′

i denotes the
concatenation vector of xi||x′′

i .
We refer to attention and gate-augmented mechanism as

the gate-augmented graph attention layer (GAT). Then, we
can simply denote xout

i = GAT
(
xin
i , A

)
. The node embed-

ding can be iteratively updated by GAT, which aggregates
information from neighboring nodes.

Graph Neural Network Architecture of our model
Using the GAT mechanism described before, we adopted
four layers of GAT in GNN-DOVE to process the node em-
bedding information from neighbors and to output the up-
dated node embedding. For the two adjacency matrices A1

and A2, we used a shared GAT. The initial input of the net-
work is atom features. With two matrices, A1 and A2, we
have x1 = GAT

(
xin, A1

)
and x2 = GAT

(
xin, A2

)
. To

focus only on the intermolecular interactions within an input
protein complex model, we subtracted the embedding of the
two graphs as the final node embedding. By subtracting the
updated embedding x1 from x2, we can capture the aggre-
gation information that only comes from the intermolecular
interactions with other nodes in the protein complex model.
Thus, the output node feature is defined as

xout = x2 − x1 (7)

Then, the updated xout will become xin to iteratively aug-
ment the information through the three following GAT lay-
ers. After the node embeddings were updated by the four
GAT layers, the node embedding of the whole graph was

summed up as the entire graph representation, which is con-
sidered as the overall intermolecular interaction representa-
tion of the protein complex model:

xgraph =
∑
k∈G

xk (8)

Finally, FC layers were applied to xgraph to classify whether
the protein complex model is correct or incorrect. In total,
four FC layers were applied. The first layer takes 140 fea-
ture values from Eq.8. The three subsequent layers have a
dimension of 128. RELU activation functions were used be-
tween the FC layers, and a sigmoid function was applied for
the last layer to output a probability value.

Training Networks
Since the dataset was highly imbalanced with more incor-
rect decoys than acceptable ones, we balanced the training
data by sampling the same number of acceptable and incor-
rect decoys in each batch. We sampled the same number of
correct and incorrect decoys. To achieve this, a positive (i.e.,
correct) decoy may be sampled multiple times in one epoch
of training.

For training, cross-entropy loss(Goodfellow, Bengio, and
Courville 2016) was used as the loss function, and the Adam
optimizer was used for parameter optimization. To avoid
overfitting, a dropout(Srivastava et al. 2014) of 0.3 was ap-
plied for every layer, except the last FC layer. Models were
trained for 30 epochs with a batch size of 4. Weights of ev-
ery layer were initialized using the Glorot uniform(Glorot
and Bengio 2010) to have a zero-centered Gaussian distri-
bution,and bias was initialized to 0 for all layers.

Figure 2: The ROC with indicated AUC and for our model in comparison to GNN-DOVE



Figure 3: The precision-recall curves for out model vs GNN-DOVE with AP indicated

Table 3: The performance of our model for each fold in the cross validation on the DockGround dataset

Fold Accuracy True positive rate True negative rate

1 93.02% 45.76% 96.50%
2 91.05% 44.45% 95.29%
3 84.71% 39.56% 90.79%
4 92.15% 45.88% 95.09%

First, we performed four-fold cross-validation on the
Dockground dataset (Table 1). For fold 1,we found a learn-
ing rate of 0.0002 with a weight decay of 0 achieved the
highest accuracy on the validation set. We used this parame-
ter combination throughout the other three folds in the cross-
validation. The training process generally converged after
approximately 30 epochs.In the end,We used the full dataset
for training, where 20 percent of the data was selected for
validation to check for convergence.

Result
Performance on the Dockground Dataset
We evaluated the performance of our model for each fold in
the cross validation on the DockGround dataset.We bench-
marked our model against GNN-DOVE(Wang et al. 2020),
an recent highly performant deep learning models.The av-
erage AUC achieved by the trained model on the test set
was 0.83 indicating that the model effectively learned to
classify unseen protein-protein docking decoys with struc-
tures and sequences differing from those seen in the training
set.Compared with our model, GNN-DOVE only achieved
by the trained model on the test set was 0.80. More interest-

ingly, when comparing the average precision(AP),our model
outperforms GNN-DOVE. GNN-DOVE achieves an AP of
0.77 compared to our AP of 0.83. This indicates that our
model typically achieves a greater precision in comparison
to the standard Rosetta scoring function. As for some com-
mon deep learning evaluation metrics, such as classification
accuracy, our model achieves good results on every fold,
especially when classifying negative samples.This indicates
that our model has a strong ability to classify the negative
class samples, but lacks the ability to classify the positive
class samples.

Performance on the CAPRI Scoring Dataset
We evaluated the performance of our model and GNN-
DOVE on the CAPRI score set. The average AUC achieved
by the trained model on the test set was 0.65 indicating
that the model effectively learned to classify unseen protein-
protein docking decoys with structures and sequences differ-
ing from those seen in the training set. Compared with our
model, GNN-DOVE only achieved by the trained model on
the test set was 0.46 indicating that the model can be con-
sidered as unsatisfactory.Unfortunately, our model does not
perform well on average accuracy, and GNN-DOVE does



Figure 4: The evaluation metrics calculated on the CAPRI score set will be presented in the figure and table4.(a)The ROC with
indicated AUC and for our model in comparison to GNN-DOVE.(b)The precision-recall curves for out model vs GNN-DOVE
with AP indicated

Table 4: The performance of our model and GNN-DOVE on the CAPRI score set

AUC AP Accuracy True positive rate True negative rate

GNN-DOVE 0.46 0.14 44.85 75.55 38.22
Our model 0.65 0.19 44.44 62.48 45.51

likewise poorly. This is because there are many negative
samples in CAPRI score set, and the prediction accuracy of
the two models for the negative class samples is not high.

Discussion
In this work,we developed our model for protein docking
decoy selection,which still following the network model of
SOTA(GNN-DOVE) for this task, we introduce the dmasif,
which achieved the state of the art in current protein rep-
resentation work, which can input proteins and output rel-
evant chemical features. It is our innovation to introduce
this chemical features into the GNN-DOVE model. Using
only part of the training data of GNN-DOVE, we achieve
the same performance as GNN-DOVE, and even surpass this
work in some metrics. The performance of our model likely
would be improved by considering other features such as ge-
ometric features ,which can be introduced by the dmasif. On
the other hand, leveraging different network architectures is
also a good approach.
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